

Contribution to ADA Conference on Skills for Green and Just Transition Vienna 18th October, 2024

Author: Ralf Lange (FAKT Consult)

Source title page: GIZ Sectorproject TVET, 2023

Agenda

Policies: gap between green agendas and human resource policies

Policies: gap between green agendas and challenges in green transition (energy, circular economy)

4

5

Greening TVET

Examples for promoting green skills and jobs from Ghana and Serbia

Missing link between climate action agendas and human resource development policies

Climate action agendas and policies for transition of key sectors (e.g. energy) do not refer to human resource development needs

Lack of green skills impede green and just transition processes

"A successful Just Transition requires a coherent alignment of green agendas and skills development policies" (GIZ 2022)

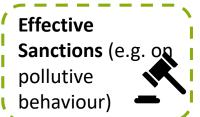
Greening TVET (and just transition) have become buzz words (by now), but only few countries have relevant education and labour policies

TVET systems can be slow responding to new labour market requirements

Drivers and challenges in the Green Transition

"The private sector needs investment, incentives, sanctions and support to develop a demand for Green Skills"

private Sector



Weak motivation of companies (small to large) to invest in green technologies and costly environmental protection measures

Conditions (in private sector) for international value chains

Government

Support (e.g. market information, credit lines)

Public and private investment in green technologies (e.g. through climate fonds)

Agriculture:

- Organic + regenerative
- cE practices in agriculture (organic waste etc.)

Circular Economy:

- Solid waste (reuse, recycling)
- CE practices in manufacturing industry
- Environmentally responsible recycling (e.g. E-waste)

Energy:

- Solar systems
- Wind Energy
- Biomass
- Energy efficiency

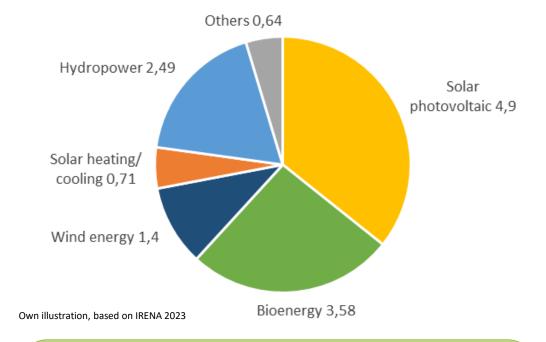
Environmental professions:

- Water and waste water
- Environmental restoration (watersheds, river systems, forests, etc.)
- Waste management

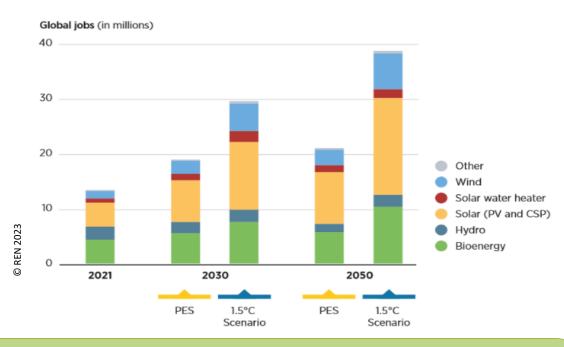
Green (physical) infrastructure + construction:

- Greening of construction value chains
- Energy efficiency in construction
- Climate resilient infrastructure

Sustainable mobility:


- Automotive supply industry moving towards e-mobility
- E-Vehicle maintenance
- E-mobility infrastructure
- Energy efficient public transport

The transition to a renewable energy sector can create many jobs...


Distribution of emplyoment in RE [in mio.], 2022

Current total global employment in RE sector: 13.7 Mio. (6.3 Mio new jobs since 2012)

- Two-thirds of all jobs in Asia, mainly in China (41%)
- Europe: 1.9 Mio. (14%), no figures for SEE
- Africa: estimated 300.000 400.000 jobs in installation and maintenance (IRENA, IEA)

Global Jobs in Renewable Energy, by technology, in the 1.5°C Scenario and PES, 2030 and 2050



Estimation for employment prospects in RE sector:

- African countries very positive: 4.8 Mio. short-term jobs and 370,000 medium- to long-term new jobs by 2030 (PwC, 2021)
- South East Europe: no reliable new data (50.000 new jobs until 2050 (IRENA 2019))

...but employment effects need to be differentiated

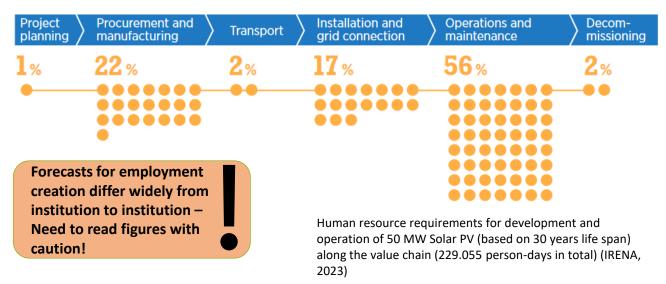
Uneven distribution across...

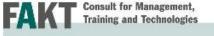
Skill-levels

Geography

Gender

Employment effects depend on integration of country into **global value chains** (own production or import) and can be **permanent or temporal** (construction and operation):


- Most jobs for PV manufacturing are located in China (>77%)
- Installation and operation of solar PV provide local jobs (ca. 17% and 56% of the work load needed to install and run a solar PV) (IRENA, 2023)



Job creation (e.g. solar PV) vs. job destruction (e.g. coal mining)

- 56 Mio. new jobs created in the RE and related sectors until 2030 (IRENE, optimistic scenario)
- 17 Mio. jobs lost in fossil fuel sector (e.g. coal or oil)
- Estimated additional **net employment: 39 Mio.** jobs (that need skills upgrading, reskilling, initial training) (IRENA 2023)

Circular economy: driver for job creation?

What do we understand as a circular economy?

- Broad concept no uniform definition
- ILO: reuse, repair, recycling and retention of material goods as an alternative to the linear model of extraction, manufacture, use and disposal

Global employment potential for the circular economy

- Optimistic estimates: "over 18 Mio green jobs can be created by circular economy practices till 2030 (ILO) (modelling based on ambitious political & economic scenarios)
- Conservative scenarios: 6 8 Mio jobs globally till
 2030) (OECD)

Drivers for job creation in the circular economy

- Policies, regulations and incentives that aim at reducing the use of primary materials and promote reuse/ recycling
- Increase of prices or non-availability of primary materials
- Innovations in processing technologies and IT
- Sustainability policies in companies

Example Ruanda:

- ► Ban of single use plastics since 2008
- National Circular Economy Action Plan
- Tax exemptions for companies that invest in ecofriendly alternatives to single use plastics
- Growing private sector but no figures on job creation

Jobs and skill levels in the circular economy

Positions requiring higher technical education:

- Processing technology engineers
- Environmental engineers...

Skilled worker level (TVET relevant):

- Operators of recycling facilities
- Managers of waste collection fleets
- Bio-chemical lab technicians
- Maintenance personnel (industrial mechanics, mechatronic technicians...)

Lower skill jobs (mostly trained on job):

- Waste collectors
- Waste separators
- Machine operators

Change of occupational-specific skill requirements

Requirements and developments differ across skill levels: most important changes take place at high and medium skill levels

Skills requirements for highly qualified workers (engineers/technicians) change most

Medium-skilled: Skill requirements across most occupations are changing (green + digital) but rarely as new occupations

Work tasks at **lower skill levels** change less. Workers primarily need environmental awareness and offers to advance qualification (if jobs are eliminated due to automisation)

Skill areas	Implications for TVET
Occupation- specific knowledge and skills teaching up to date green tech know- how	 Curriculum modernization Partnerships with companies leading the transformation ("dual training") New training equipment Training of teachers
Transversal skills – enhancing ability of learners to cope with complexity of work	 Project-based learning to acquire transversal skills in interaction/group work Stimulation of complex coordination tasks using digital learning methods
Digital skills — learners to be prepared for the digitalization of the world of work	 Digital literacy of teaching staff and learners Think green & digital skills together Use occupation-specific software applications for learning

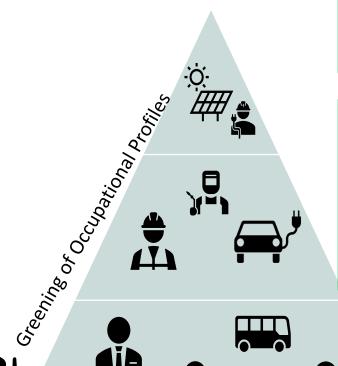
Keep pace of the rapidly changing world of work: Identifying the skills gaps and future skills needed for green and digital transition

Modernizing technical & vocational education for **building the future workforce for green & digital transition**

The role of TVET in the process of Green and Just Transition

Providing upskilling programmes for new technologies and work tasks

TVET for sustainable development: Build awareness for environment and climate change among young people


Just Transition: Contribute to **employment-oriented re-training programmes** for workers in declining industries (in linkage with active labour market **measures**)

Include all groups in society equally

'Greening' of TVET Systems

Introducing new green fields of study/ occupational profiles mostly in higher education

Greening of existing occupational profiles (initial TVET):

Adding new skills, adapting skills

Certified further modular training on top of existing relevant qualifications

Integrating of
environmental protection
and climate change
awareness into all TVET
curricula

Alignment of TVET policy with sustainability and digitalisation policies

Greening to be part of the continuous **TVET modernization process**

Interlinkage of TVET with other forms of education to ensure mutual permeability

Appropriate **training of TVET personnel** to draw on the potential of role models and change agents

Greening TVET institutions to play a function as role models

Greening to be part of holistic TVET reform

Experiences from greening TVET

Project designs:

- Few TVET projects (so far) have an explicit focus on "greening" TVET systems but rather address greening as a component
- Number of projects in "green sectors" (specifically energy) growing that have a skills development/TVET component
- Green skills addressed in combination with promotion or business development in green sectors
- ▶ Projects addressing greening through both higher technical education and TVET (and the links in between)

Some lessons learned:

- Awareness for greening education and TVET is growing
- ► If education/ TVET policies do not address greening, prospects for "mainstreaming" of environmental education and green skills in TVET programmes are rather weak
- ▶ Progress made esp. in introducing green skills esp. for renewable energy (PV systems) but employment potential fluctuates and depends on transition of energy sector
- Awareness of industry organisations on greening is often low, except for associations in the green industry itself

Case from Ghana: Skills and job creation in the circular economy/ recycling

"Agricentric Ventures": Turning organic waste into fertiliser (Social Enterprise in Kumasi Ghana)

- Organic waste is collected on market days and from food processors
- Waste is being processed into solid and liquid fertilizer (2 weeks processing time)
- Manual processing: jobs created for local community (approx. 30 employees, mostly women)
- Fertiliser marketed to farmers in Central
 Ghana and beyond

Success factors:

- Determined (social) entrepreneurship
- Processing technology developed with local know-how
- ► Technological support of local University
- External business mentoring by SEED network and Innovation Hub
- Use of simple handoperated machinery locally produced
- Clients (farmers) need to be "convinced" and trained to use the new product

AgriCentric Ventures from Ghana | seed.uno

Fertilised pellets produced from rice husks Picture: Tobias Lange, 2024

Case from Ghana: Skills and job creation in the circular economy/ recycling

Recycling and Upcycling – Cases from Ghana (Trashy Bags <u>Trashy</u>

<u>Bags Africa | Upcycled Bags</u> and local busiess recycling hard plastics

- **Upcycling:** Waste (plastic and fabric) used for manufacturing of upcycled fashion products (example: Trashy Bags)
- Recycling: plastic waste processed into granulate for manufacturing of industrial goods
- **Employment intensive** supply and value chain (from waste collectors, separators to workers in processing, production and sales

Critical factors:

- ► Weak awareness in population and disinformation about environmental effects (of plastic)
- ► Limited access to venture capital for setting up the business
- ► Unstable supply chains
- ➤ Recycling: Influential market actors determine sales prices of recycled products (e.g. Chinese/ Indian owned industries)
- ► Upcycling: Low acceptance for uncycled products in local middle class population
- ▶ Jobs created often not decent (health hazards, low income)

Picture top: Display at sales shop Trashy Bags, Accra;

Picture bottom: Recycling Company Buotobom, Ghana (source: Tobias Lange, 2024)

Case from Serbia "Prospects for Young People in Rural Areas in Serbia" (GIZ)

Green Skills + Jobs in Agriculture:

- Skills upgrading (and business development) of bee-keepers as a means to maintain biodiversity
- "Rural Zoomers": enabling students in agricultural VET schools to explore new environmentally friendly business ideas for their family farms
- Linking local organic food producers with tourism businesses for local sourcing

Skills + Jobs in Rural Tourism:

- "Rural Zoomers": Students of tourism VET schools develop business ideas for rural tourism
- Rural households enabled to access finance for investment into agro-tourism
- Culinary tourism (training and mentoring) based on local (organic) food products
- Supporting local eco tourism initiatives (hiking, cycling, canoeing...) in selected regions

